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Abstract. We have studied the self-assembly of amphiphiles over wide ranges of temperature
and concentration using Monte Carlo simulation of a lattice model introduced by Care. A new
feature that we have observed is that for all the concentrations studied, the specific heat exhibits a
peak as a function of temperature. The physical origin of this peak can be traced back to energy
fluctuations occurring at the onset of micelle formations and can be used to characterize the critical
micelle concentration (CMC). Our observations (i) that the temperature dependence of the specific
heat fits rather well with the Schottky-type specific heat of a degenerate two-level system and
(ii) that there is the simultaneous appearance of a knee in the cluster distribution function (CDF)
explain the underlying physics of identifying the CMC with the appearance of this knee in the
CDF, as proposed by Nagarajan and Ruckenstein. We show that the various moments of the cluster
distribution functions can be expressed solely in terms of the second moment as predicted by a
mean-field theory of Blankschtein, Thurston, and Benedek. We also calculate the fluctuation in
the amphiphilic aggregate sizes and relate our simulation results to those from a simple but exactly
soluble model proposed by Israelachvili.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

An amphiphilic molecule consists of a hydrophobic tail, often a hydrocarbon chain, and a
hydrophilic head. Because of the presence of these two opposing interactions towards the
solvent in which they are immersed, amphiphiles can form a variety of structures, e.g., spherical
and cylindrical aggregates (called micelles), bilayers, and vesicles [1]. Surfactants which are
used in making soap and in the petrochemical industries, di-block and tri-block co-polymers,
and phospholipids which form the cell membrane are a few examples of amphiphiles [2].
Understanding the physics of self-association of amphiphiles is extremely challenging and also
important because the underlying ideas have found connections to other fundamental areas,
e.g. phase transitions in membranes, crumpled surfaces, and geometry of random surfaces [4].
Furthermore, syntheses of novel nano- and meso-structured materials have been achieved by
a surfactant-directed templating route, to produce ordered hexagonal arrays of cylindrical
structures [5], disordered worm-like structures [6], and sponge-like porous structures [7].
Synthesis of a wide variety of structures using short di-block and tri-block co-polymers has
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also gained considerable attention in designing and fabricating intricate patterns spanning
many length scales [8].

Analytical theories disregarding the detailed shapes of the amphiphiles and incorporating
ideas of geometric packing [2, 3], or a mean-field type of approach [9–16], have been able
to predict several aspects of the aggregation process. Anything beyond a mean-field type
of approach becomes immediately very difficult. Naturally, numerical simulations [17–35]
have been extremely useful in addressing some of the fundamental and practical aspects of
self-assembly. In order to get a thorough understanding of micellar aggregation as a function
of temperature, concentration, and other external parameters, various coarse-grained models
have been proposed which neglect the detailed chemical attributes of the amphiphiles. As a
result, it is computationally feasible to study the aggregation properties of a large number of
amphiphiles. Alternatively, numerical simulations respecting the geometrical and chemical
attributes of the amphiphiles have also been attempted, but either at the cost of assuming a
pre-assembled micellar structure, or restricting the study to a few micelles only [36]. Coarse-
grained models whose basic ingredient is an unfavourable interaction between the hydrocarbon
tails and the solvent water molecule have been able to predict micellar aggregation. More recent
simulations eliminating the solvent degrees of freedoms have also been able to reproduce
the aggregation properties of the amphiphiles [30, 31, 34, 35]. Typically, for continuum
models, shifted Lennard-Jones interactions are assumed among different components of the
amphiphiles with appropriate cut-off parameters for simulation of neutral systems. An extreme
version of these coarse-grained models is the lattice model where amphiphiles are allowed to
move on a lattice only. The lattice models have also been studied and have produced very
similar results [18–24]. Simulation studies on lattice models have the additional advantage
that the algorithms are very fast and fairly large systems can be studied.

In this paper we report several new results on thermodynamic and structural properties
of the aggregation process based on Monte Carlo simulation on a lattice model introduced by
Care and co-workers [18–21]. First we make a detailed comparison of analytic predictions
of mean-field theories regarding characteristic features near the critical micelle concentration
with our simulation results. Second, we show that a peak in the specific heat as a function of
temperature is a general feature and identify the temperature as a characteristic temperature
for micelle formations. Third, we test the recurrence relations among moments of the cluster
distribution function derived from some general assumptions with our simulation results [10].
Finally we investigate the scaling of micellar size fluctuation as a function of concentration
and compare this with the analytic result for an exactly solvable one-dimensional system. In
the next section we introduce the model and describe the Monte Carlo simulation scheme.

2. Model

We have used a model introduced by Care [18–21] where the amphiphiles are confined to a
two-dimensional square lattice of size L × L. In this model each amphiphile is represented
as a connected segment of s adjacent sites (chain length = s). One of the two end sites is
the hydrophilic head, and the remaining s − 1 sites make the tail of the amphiphiles. Each
amphiphile will also be called a monomer. We considerNA of such amphiphiles which occupy
sNA lattice sites. The remainingNw = L×L−sNA sites are occupied by the solvent molecules.
The total energy of the system is given by

H = εT SnT S + εHSnHS + εHHnHH +
∑
i

εic (1)

where nT S , nHS , nHS are the total number of tail–solvent (TS), head–solvent (HS), and
head–head (HH) bonds of strengths εT S , εHS , εHH respectively, and

∑
i ε

i
c represents the
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conformation energy which may include bending energies as well. Defining γ = εHS/εT S
(εT S will be assumed to be always positive, indicating a repulsive interaction between a tail
particle of the amphiphile and the solvent), η = εHH/εT S , ε̄i = εi/εT S , the above equation
can be written as

H = εT S[nT S + γ nHS + ηnHH ] +
∑
i

ε̄ic. (2)

The quantity γ is the most crucial parameter in this model. Care and co-workers have studied
various aspects of this model in detail [18–21]. For γ > 0 there is a complete phase separation
of the amphiphiles at low temperature, whereas for a negative value of γ there is a gain in
energy caused by shielding the tail particles from the solvent, and one gets micelles of different
shapes and sizes depending upon the chain length and particular choice of γ . Vesicles and
bilayers have been observed in the numerical simulation of these types of lattice model [20,24].
For γ very small but negative, one gets large micelles. With larger negative values of γ , the
average cluster size decreases.

We have carried out numerical simulations for a wide range of temperature and amphiphile
concentration for several choices of γ . For simplicity, we have chosen η = 0, and εic = 0. Most
of our simulations are done in a 128 × 128 square lattice. Most of the results presented in this
paper are for chain length s = 3 with one head and two tail particles. However, for comparison
we have also studied larger chain lengths (s = 6). In a few cases we have also looked at larger
lattice sizes to check the finite-size effects. Starting from a high-temperature phase at T = 1.6
(where the temperature is measured in units of εT S/kB), we have reduced the temperature
in steps of 0.02 and 0.01 to the lowest temperature of 0.42. For each temperature we have
calculated the total energy, the specific heat, and the cluster (or aggregate) size distributions
and their moments.

Monte Carlo moves consist of slithering snake reptation of the individual chains [37], kink
jumps of the middle units, and rotation of the end units [38]. For high temperature the typical
length of MC steps is ∼105. For lower temperatures 107–108 MC steps were necessary for
proper equilibration. To find out the concentration dependence of different physical quantities,
we studied systems consisting of 32 to 1600 amphiphiles. For each concentration ensemble,
averages were taken for 3–5 different initial configurations. Most of our results reported in
this paper are for γ = −0.6.

3. Results

3.1. Critical micelle concentration

A ubiquitous feature of amphiphiles is the behaviour of unattached amphiphiles as a function
of the total concentration. Let us denote by Xn the concentration of amphiphiles contained
in aggregates of size n. Thus X1 is the concentration of monomers, X2 is the concentration
of amphiphiles in dimers, etc. At very low concentrations, entropy favours them not to form
micelles. As the concentration is increased, micelles of all sizes begin to form and this manifests
itself as a rapid flattening of X1 as a function of the total concentration X. In figure 1(a) we
show the variation of X1 as a function of X for different temperatures. It is customary to
pick a value ofX on theX1-versus-X curve as the critical micelle concentration (CMC)Xcmc,
beyond which X1 hardly increases. There have been numerous efforts to characterize Xcmc.
Ruckenstein and Nagarajan tried to equate Xcmc to that particular value of X (XRN ) whose
corresponding cluster distribution exhibits a point of inflection [13, 14]. As X is increased
beyond XRN , the point of inflection becomes flat and eventually exhibits a minimum and a
maximum as a function of the cluster size. Ben-Naim and Stillinger [15] (BS) studied a simple
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Figure 1. (a) The concentration of monomers X1 as a function of the total concentration X of the
amphiphiles for different temperatures. The symbols represent the data obtained from simulation
and the straight lines are the corresponding polynomials fitted to the data. (b) Variation of d2X1/dX2

as a function of the total concentration X of the amphiphiles for different temperatures.
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model of micellization and found that theXcmc is better identified as that value ofX (XBS) for
which the absolute value of d2X1/dX2 is a maximum, lending support to an idea originally
proposed by Phillips [39]. In the BS model XRN/XBS ≈ 20 and therefore Ben-Naim and
Stillinger claimed that the Ruckenstein–Nagarajan criterion was not universal. It is worth
pointing out that an undesirable feature of the BS model is that the above minimum in the
cluster distributions instead of being smooth exhibits a cusp, probably resulting as an artifact
of a sharp cut-off used in their model. Ruckenstein and Nagarajan made the criticism that
the model used by Ben-Naim and Stillinger was unphysical and therefore did not disprove
the assertion that one could associate Xcmc with the onset of a knee in the cluster distribution
function.

We have fitted the curves in figure 1(a) with a polynomial:

f (x) = a0 tanh

(
x

a1

)
+
n=8∑
n=2

anx
n−1.

Near X ∼ 0 the slope

lim
x→0

dX1/dX = 1.

The slope gradually decreases to zero and for large concentration becomes marginally negative.
Care and co-workers [21] in their simulation observed this slight but noticeable negative slope.
We have calculated d2f (x)/dx2 and find that the maximum of |d2f (x)/dx2| occurs around
X = 0 as shown in figure 1(b). The inset shows d2g(x)/dx2, where the function g(x) is similar
to f (x) except that the coefficient of the linear term is forced to be unity (a2 = 1 − a0/a1)
and fits the numerical data of figure 1(a) well. As the temperature decreases the minimum
becomes sharper and shifts towards lower values of X. A comparison with figure 1(a) shows
that the values of X at which the minima occur are indeed very close to X = 0. From our
simulation results we have also looked at the cluster distributions as a function ofX for various
temperatures and located the approximate value of X where the cluster distribution shows a
point of inflection. We find that, as the temperature increases, XRN shifts to a larger value of
X and may occur in the flat region of figure 1(a), far away from the knee. This is in qualitative
agreement with the idea of Stillinger et al that the point of inflection need not necessarily be
associated with the knee of figure 1(a). However, as we will see later, the RN criterion of
associating the knee of the cluster distribution is physically very appealing and can be related
to other indicators of self-association. The fact that we get a maximum of d2f (x)/dx2 close to
X = 0 is partly due to short amphiphiles and partly due to the two-dimensional simulation, both
of which make the X1-versus-X plot smoother. This is consistent with the analytic treatment
of Stillinger and Ben-Naim [16] who, using the approach of Lee and Yang [40], concluded
that no phase transition can be associated with Xcmc for finite-size micelles.

In order to carry out further analyses of our simulations results, we have adopted a
working definition ofXcmc as the intercept of the horizontal line passing through a point where
dX1/dX = 0 and the line X1 = X, as shown by the dotted line in figure 1(a). For larger and
larger surfactants, keeping the head-to-tail ratio fixed, it is expected that the X1-versus-X plot
will approach the shape of the dotted curve. We denote this intercept as X−

cmc. An alternative
way to characterize Xcmc is to choose that particular value of X where dX1/dX = 0. This is
consistent with the idea that beyond this value ofX (we call thisX+

cmc)X1 either stays constant
or decreases slightly. Both of these plots are shown in figure 2. An important and noticeable
feature of figure 2 is a characteristic energy (temperature) (T ∗ ≈ 0.6) beyond which X−

cmc

increases linearly andX+
cmc rises rapidly as a function of T . In the next section we will explain

that this characteristic temperature T ∗ is an important quantity in understanding the physics



6146 A Bhattacharya and S D Mahanti

0 0.2 0.4 0.6 0.8 1
X

0

0.02

0.04

0.06
Xcmc

Xcmc

−

+

Figure 2. Variation of X−
cmc and X+

cmc as a function of temperature. For comparison, X−
cmc has

been scaled by the factor 5.

of micellization and can be related to the knee of the cluster distribution function and other
measurable quantities.

3.2. The peak in the specific heat and dX1/dT

In this section we show the temperature variation of the specific heat and various quantities
related to the distribution of amphiphiles among aggregates of different sizes. The specific
heat at each temperature is calculated by monitoring the energy fluctuations (〈E2〉 − 〈E〉2 =
〈(�E)2〉 = kBT

2Cv). In order to study the temperature dependence, starting from a high
temperature (T = 2), the specific heat is calculated for each temperature as the system is slowly
cooled to a final lower temperature (T = 0.45). The specific heat calculation is repeated while
the system is heated again. No hysteresis in energy nor shift in the position of the peak is found,
guaranteeing thermodynamic equilibrium. While for temperature around T = 1 and above,
runs with two different initial conditions with ∼106 Monte Carlo steps give almost identical
results, for the lower temperatures ∼108 MC steps are used. Accordingly, the interval for
taking averages is increased to eliminate correlations between two successive measurements.
The average is taken for 4 or 5 such runs with different initial random configurations of the
amphiphiles, which eliminates spurious effects.

When plotted as a function of temperature, both the specific heat and the quantity (dX1/dT )
exhibit peaks as shown in figure 3 and figure 4. We have shown results for four different
concentrations. We have checked that the occurrence of these peaks is a general feature. Let
us now have a closer look at these figures. For each concentration the peak for dX1/dT
appears at a slightly higher temperature than the corresponding peak in the specific heat. The
positions of both the peaks are weakly dependent on the total concentrationX. Our simulation
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Figure 3. Specific heat as a function of temperature for four different concentrations of amphiphiles
(solid line). The dot–dashed line is a fit using the expression for a Schottky-type specific heat for
a degenerate two-level system with various values of the degeneracy ratio g (see the text) and �.
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Figure 4. Variation of dX1/dT (solid line), dX2/dT (dashed line), and dX3/dT (grey solid line)
as a function of temperature for the same four different concentrations of amphiphiles as in figure 2.

data indicate that the peaks shift slightly to lower temperature with decreasing concentration.
The specific heat data can be fitted reasonably well with a Schottky-type specific heat for a



6148 A Bhattacharya and S D Mahanti

degenerate two-level system [41] as indicated by the dashed lines in figure 3.
The weak concentration dependence of the position of the specific heat peak and the

Schottky-type behaviour indicate that this phenomenon can be ascribed to the thermodynamics
of a two-level system whose characteristic energy scale is also weakly concentration dependent.
Besides, we also find that the peak for the specific heat and dX1/dT are inter-related as
explained below. Let us remind ourselves that for a two-level system separated by an energy
gap �, the energy per particle is given by

ESchottky = −�
2

tanh

[
�

2kT
+

1

2
ln(g)

]
and the specific heat is given by

CSchottky =
[
�

kT

]2

sech2

[
�

2kT
+

1

2
ln(g)

]
=

(
�

kT

)2
ge�/kT

[1 + g�/kT ]2

where g = gl/gu is the ratio of the degeneracies gl and gu of the lower and upper energy levels
respectively. For g = 1, the specific heat shows a peak for �/kT ∼ 0.4. For larger values
of g the position of the peak shifts towards a lower value of �/kT . Therefore, for a fixed �,
an increase in g will shift the peak to a higher value of the temperature (notice that g−1 is the
relative degeneracy of the upper level compared to the lower level).

For the amphiphiles on a lattice, one can think of the energy levels in the following way.
For these systems it is reasonable to assume that the minimum-energy configuration of an
n-mer (an aggregate containing n amphiphiles) is a strip where every other head is on one side
as shown in figure 5. For such a configuration, the total energyEn = (−3γ +1)n+4. Consider
the energy of dissociation Egap = En − (En−m + Em), where an initial aggregate of size n
breaks into two smaller aggregates of sizesm and n−m respectively. For the one-dimensional
geometry shown in figure 5, this energy difference Egap = 4 for any n � 2 and m � 1.

Figure 5. Excitation energy for one-dimensional micelles. The filled squares and circles represent
the head and the tail of the amphiphiles, and the crosses are the solvent particles. The top part shows
the minimum-energy configuration of a chain. The bottom part shows whether the configuration
at the top breaks up into two fragments of sizes n− 1 and 1. The energy difference in this case is
4εT S caused by breaking two tail–tail bonds and exposing them to water. For this one-dimensional
linear aggregate, the excess energy is the same as for an aggregate of size n breaking up into two
clusters of sizes n−m and m respectively for n � 2 and m � 1.
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Table 1. Parameters for the degenerate Schottky model.

Lattice size X � g

128 × 128 0.0039 3.8 0.0016
128 × 128 0.0078 3.8 0.0032
128 × 128 0.0156 3.7 0.0064
128 × 128 0.0312 2.9 0.0030

Table 1 gives the values of g and � for the fitted data shown in figure 3. For the first three
concentrations, the data fit very well with a value of � ∼ 4 and a degeneracy factor which
increases proportionally with the concentration. The slight shift in the peak temperature can
thus be associated with the increase in the degeneracy factor. It is also worth noting that since
Egap = 4 is valid for all n � 2, and m � 1, this implies that for a given degeneracy factor
g, associated with this Egap = 4, there exists a temperature at which clusters of all sizes can
break up into fragments of arbitrary smaller sizes giving rise to a large energy fluctuation.
Our fit to the simulation data is consistent with the fact that with increasing concentration the
available phase space decreases, which is reflected in a decrease (increase) in g−1 (g). As the
concentration of the amphiphiles increases, further deviation from this simple theory becomes
evident. For X = 0.032, the value of g varies significantly from linearity and the presence
of the other amphiphiles makes the effective � less than 4. Nevertheless, it is worth noting
that even in this case the energetics of the lattice amphiphiles can be described as an effective
two-level system with a renormalized width and degeneracy parameter.

Now we give a physical picture of the Ruckenstein–Nagarajan criterion of identifying
Xcmc with the knee of the cluster distribution. The peak in the specific heat implies the onset
of rearrangement of amphiphiles which causes a large amount of energy fluctuation. As the
temperature is lowered, clusters begin to form. This is also evident on looking at the cluster
distribution function (CDF) Xn/n at different temperatures. At high temperature there is
almost a monotonic decay of the CDF. At low temperature the CDF has a minimum followed
by a maximum which then decays to zero for large n. For each concentration, we looked
carefully at the CDF in the temperature region around which the specific heat peak occurs. We
find that the CDF is marked with the onset of a knee [13] at the same temperature for which
the peak occurs for the specific heat as shown in figure 6(c). Below this temperature, the knee
becomes flat for several values of n and eventually exhibits a maximum at a lower temperature.
Alternatively, for the same temperature we have checked that the cluster distributions exhibit
similar features as a function of the total concentration. Our interpretation of the heat capacity
in terms of a Schottky type of behaviour is also consistent with this observation. The flattening
of the CDF actually means that clusters of different sizes begin to appear. This occurs at the
temperature corresponding to the Schottky gap when it becomes energetically favourable for
two amphiphiles to bind together. We can now also explain the observed peak in dX1/dT .
Assuming a negligible inter-micelle interaction (because of the short-range nature of inter-
amphiphile interaction), the total energy of the system can be written as

E = ε1X1 + ε2X2 + ε3X3 + · · · . (3)

The heat capacity will have two contributions, one from the temperature dependence of Xi
and the other from the temperature dependence of the energy εi of each micelle of size i.
At temperatures of interest we expect the latter to be rather small and we can write the heat
capacity as

Cv = dE

dT
= ε1

dX1

dT
+ ε2

dX2

dT
+ ε3

dX3

dT
+ · · · . (4)
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Figure 6. Variation ofXn/n for differentX; (a) at
T = 1.2, (b) at T = 0.50 for X = 0.0078 (◦),
0.0156 (�), 0.03125 (�), and 0.0625 (�); (c) the
onset of a knee at different temperaturesT = 0.59
(◦), 0.62 (�), 0.66 (�), and 0.71 (�) for the same
concentrations as in (a) and (b).

In figure 4 we have shown the plots for dX2/dT and dX3/dT . They also exhibit peaks but
at successively lower temperatures compared to the peak of dX1/dT . This results in a shift of
the peak of dE/dT to a lower temperature and explains why the peak of dX1/dT occurs at a
higher temperature than the corresponding peak in dE/dT .

We have also looked at the distribution of the Xn for different concentrations and
temperatures. For a given concentration, comparing the distribution functions for Xn and
Xn/n as a function temperature we find that the knee for Xn occurs at a higher temperature.
This is shown in figure 7. Figure 7(a) shows the appearance of knees at various concentrations.
When compared with figure 6(c), the temperature for which the knees occur are higher than
the corresponding temperatures shown in figure 6(c). For the same set of temperatures as in
figure 6(c) the Xn have already developed peaks as shown in figure 7(b). The factor n in the
denominator of Xn/n competes with the rise of Xn as a function of n. Hence a peak in Xn at
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Figure 7. Appearance of a knee in Xn for the same set of concentrations as in figure 6(c). The
temperatures at which they occur are T = 0.67 (◦), 0.74 (�), 0.85(�), and 1.00 (�) respectively;
(b) shows Xns for identical parameters to those of figure 6(c) for comparison.

a finite n shows up in Xn/n only when the peak in Xn becomes much more pronounced, such
that the damping effect of n does not remove the peak in Xn/n. As a result one sees a finite-n
peak inXn/n at a lower temperature. We also checked that just as the appearance of a knee in
the CDF can be associated with the peak in Cv , in a similar fashion, a knee appears for Xn at
the temperature where dX1/dT exhibits a peak.

One may wonder whether the arguments given above for small amphiphiles (Nm = 3)
(with one head and two tail particles) are tenable for larger amphiphiles. We have verified that
the analysis based on a two-level system is also valid for larger amphiphiles. For the sake of
comparison we have carried out two other sets of simulations. We have repeated the simulation
for the same amphiphiles but in a larger box keeping the density the same. The other simulation
was carried out for (longer) amphiphiles (Nm = 6) with two head and four tail particles. The
results for the T -dependence of Cv are shown in figure 8. The circles and the squares are for
smaller (Nm = 3) amphiphiles for two different system sizes. The diamonds correspond to
the Nm = 6 system. First, it is to be noticed that the finite-size effects are almost negligible
when we compare the values for specific heat for the two Nm = 3 systems. Secondly, larger
amphiphiles (Nm = 6) also have the same feature. We checked that for the same density of
amphiphiles, peaks for the larger amphiphiles occur at a higher temperature, corresponding to
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Figure 8. Comparison of specific heats for three different systems. The circles are for 64
amphiphiles each consisting of one head and two tail particles confined in a 128 × 128 simulation
box. The squares are for the same type of amphiphile but for a larger system (256 amphiphiles
confined in a 256 × 256 simulation box). The diamonds are for 128 amphiphiles confined in a
256×256 simulation box where each amphiphile consists of two head and four tail particles. Here
the monomer density is the same but the chain concentration is half that of the previous system
(squares). This shows that the peak is a generic feature and a characteristic of micelle formation.

a higher value of the energy of dissociation Egap.
It is worth noting that the explanation in terms of a two-level system is also consistent

with the temperature dependence of X−
cmc and X+

cmc shown in figure 2. The structure and size
of the amphiphiles set an approximate energy scale. This energy scale comes out through
various quantities. The temperature variation of Xcmc and the peaks in the temperature
dependences of different physical quantities reflect that around a certain characteristic
temperature, reorganization of the individual amphiphiles begins to occur.

Finally, the entropic contributions even for Nm = 3 amphiphiles are comparable with the
binding energies. It is easy to check that the entropy for two amphiphiles [42] shown in figure 5
is kT ln(12), and the ground-state energy is 6(1 + γ ). For T = 0.6 and γ = −0.6, the energy
is 2.4 and the entropic contribution is 1.49, comparable to the binding energy. Therefore we
believe that this simple model even with short amphiphiles exhibits the generic features of
self-assembly.

3.3. Comparison with analytic theories

We now relate our simulation results to several existing theoretical predictions. Analytic
theories of self-association of amphiphiles have traditionally relied on minimizing the total
Gibbs free energy G which consists of three additive parts, Gf , Gm, and Gint [10]:

G = Gf +Gm +Gint . (5)
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Gf is given by

Gf = Nwµ
0
w +

∑
n

Nnµ
0
n (6)

where µ0
w and µ0

n are the intrinsic free energies of a solvent molecule and a micelle of size n
respectively. Nw andNn are the total number of solvent molecules and the number of micelles
of size n respectively. The free energy of mixing often has the form

Gm = kBT

[
Nw ln(Xw) +

∑
n

Nn ln

(
Xn

n

)]
(7)

where

Xw = Nw

Nw +Ns
Xn = nNn

Nw +Ns
and kB is the Boltzmann constant. Here we have followed the notation of Israelachvili [2]
and have used Xn to denote the total concentration of amphiphiles forming aggregates of size
n. Therefore the concentration of aggregates of size n is Xn/n, and the total concentration
X = ∑∞

n=1 Xn. A Flory–Huggins type of free energy of mixing has also been used [11]. Gint

describes the interaction among the micelles. In the treatment of Blankschtein and co-workers,
Gint is approximated as

Gint = −1

2

∑
i

NiUi (8)

where Ui = ∑
j fijρj and ρj is the density of micelles of size j (j -mers). In the above

equation the interaction energy has been introduced in a mean-field fashion so that an i-mer
interacts with the average potential generated from other j -mers. Minimizing the free energy
and invoking the idea of multiple chemical equilibria yields the well known result

Xn = n{X1 exp[−β(µ0
n − nµ0

1)]}n exp

[
β

∑
j

(fnj − nf1j )ρj

]
. (9)

Blankschtein et al further assume infinite-range interaction among the micelles so thatfij = ij .
For this particular type of interaction, the second exponential term in equation (9) becomes
unity and the result is exactly the same as if the inter-micelle interactions were absent. For this
special form of interaction, the coexistence curve, spinodal line, etc, can be expressed solely
in terms of the second moment of the micellar distribution (CDF), where the pth moment is
defined as

Mp =
∑
n

np
[
Xn

n

]
. (10)

When the interaction term in equation (9) drops out, it is easy to check that

Mp+1 = M2

(
dMp

dX

)
. (11)

We have carried out simulations for a large number of concentrations so that the above results
are amenable for further verification for the lattice amphiphiles. In order to check this recur-
rence relation we have calculated the second and the third moment of the cluster distribution
(M2 and M3) which are shown in figure 9 for several different temperatures. The circles,
squares, and diamonds are the data obtained from the simulation. The solid line in figure 9(a)
is a polynomial fit

M
poly

2 =
∑

bnX
n
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Figure 9. Variation of M2 (top) and M3 (bottom) as
functions of concentration for different temperatures. The
circles, squares, and diamonds correspond to the simulation
results for T = 0.5, 0.7, and 0.9 respectively. The solid
lines in the top figure are polynomial fits to the data for
M2. The solid lines in the bottom figure correspond to
M2(dM2/dX) obtained from the numerical differentiation
of M2 (see the text).

to the simulation data. The solid line in figure 9(b) represents the calculated quantity
M

poly

2 dMpoly

2 /dX. The agreement between this quantity and M3 is extremely good below
the characteristic temperature T ∗ mentioned earlier. At higher temperature the simulation
results lie slightly below those calculated from equation (11).

3.4. Scaling of moments and comparison with simple models

We have analysed the distribution of amphiphiles of different sizes using the following quantity
σ :

σ =
√(∑

i

i2ni

)/(∑
i

ni

)
− n̄2 (12)

where the ni are the numbers of clusters of size i and n̄ is given by

n̄ =
( ∞∑
i=1

ini

)/( ∞∑
i=1

ni

)
. (13)

We can define the probability of occurrence of a cluster of size i as pi = ni/
∑

i ni so that∑
i pi = 1. Then it follows that the quantity n̄ = ∑

i ipi is the average cluster size and
σ =

√
i2pi − (ipi)2 is indeed a measure of the size fluctuation of clusters.

The quantity σ has been studied by Care and co-workers [19] and it is convenient to extract
information regarding the polydispersity of the amphiphilic aggregation using σ . Analysing
the instantaneous configurations of the cluster aggregation, we find that the simple amphiphiles
(with one head and two tail particles) form elongated structures as shown in figure 10. This
prompted us to look at the variation of σ in an exactly solvable model for one-dimensional
rod-like micelles. Before we present our numerical results we briefly review some analytic



Energy and size fluctuations of amphiphilic aggregates 6155

Figure 10. A snapshot of micelle formation at T = 0.45 for 1024 amphiphiles in a 128 × 128 box.
The circles and the squares represent the tail and the head units respectively.

results for the one-dimensional micelles following Israelachvili [2]. In its simplest form the
condition for the micelle formation is given by

µ = µ0
1 + kT ln(X1) = µ0

2 +
kT

2
ln
X2

2
= · · · = µ0

n +
kT

n
ln
Xn

n
(14)

from which it follows that

Xn = n{X1 exp[(µ0
1 − µ0

n)/kT ]}n. (15)

For elongated micelles of size n, if we assume that the average binding energy for any two
amphiphiles is αkBT (where α is a measure of the binding energy relative to the temperature),
then the total energy for the aggregate of size n is (n−1)αkBT . The average chemical potential
per amphiphile (neglecting the intra-micellar entropy contributions) is then given by

µ0
n = µ0

∞ +
αkT

n
. (16)

For this particular n-dependence of µ0
n, Xn takes the following simple form:

Xn = n[X1eα]ne−α (17)

and the Xn satisfy the sum rule
∞∑
i=1

Xi = X (18)
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where X is the total concentration of the amphiphiles. For the case where the Xi have the
simple form as expressed in equation (17), the above sum is just a geometric one and, therefore,
everything can be analytically expressed in terms of the total concentrationX and the parameter
α (see the appendix). For example, pi can be written as

pi = (X1eα)i−1[1 −X1eα] (19)

where X1 is given by

X1 =
(1 + 2Xeα)−

√
(1 + 4Xeα)

2Xeα
. (20)

It also follows that σ = √
Xeα . In this rather simple model, for different concentrations of

the amphiphiles X, the quantity σ/
√
X becomes a function of α only, shown as the left inset

of figure 11. For high temperature (i.e., for small α), σ/
√
X → 1, and for low temperature it

diverges as shown in figure 11. It is worth pointing out in this context that this divergence of
σ at low temperature is a signature of the fact that the distributions of the pi tend to be more
uniform as the temperature decreases as shown in the right inset of figure 11.
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0
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X
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2 0 10 20 30 40

i
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α=4.0
α=10.0

Figure 11. The variation of σ as a function of α−1 for X = 0.1 (circles), 0.2 (squares), and 0.3
(diamonds). The inset on the left shows σ/

√
X which exhibits scaling at all temperatures. The

inset on the right shows the variation of pi as a function of the aggregate size i which tends to be
uniform at lower temperature.

At lower temperatures clusters of all sizes begin to form with similar weights which results
in increasingly large values of σ . For the lattice model, the temperature variations of σ for four
different concentrations are shown in figure 12 which exhibits very similar features to those
shown in figure 11. The inset shows the corresponding plot for σ/

√
X. There is no scaling;

however, a crossover of the scaled data in the regime from T = 0.5–0.75 is noticeable. This
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Figure 12. The variation of σ as a function of temperature for X = 0.0156 (circles), 0.0312
(squares), 0.0468 (diamonds), and 0.0625 (triangles). The inset shows the corresponding σ/

√
X

for the same values of X.

is the same temperature regime for which we observe the Schottky peak. Our results are to
be contrasted with the simulation results of σ as a function of temperature given by Care
and co-workers [19] which show a peak. In our simulation we did not observe this peak for
all the concentrations studied. On the contrary, our results are consistent with the exactly
solvable model which we believe to be correct, since the micelles formed in our simulation are
quasi-one-dimensional ones.

4. Summary and discussion

In summary, in this paper we have discussed the micellization of amphiphiles in a lattice model
and identified the onset of micelle formations with the associated binding energy of any two
such amphiphiles. This is the dominant energy scale and most of the essential physics can be
understood from the physics of a two-level system. The interaction between the amphiphiles
and other effects shifts this scale marginally to a lower temperature. This energy scale is
also reflected in the occurrence of a point of inflection and the subsequent flattening of the
distribution functions of Xn and Xn/n as functions of cluster size n. This study clarifies the
underlying physical picture of the Ruckenstein–Nagarajan criterion of identifyingXcmc with the
knee of the cluster distribution. Alternatively, this investigation shows that the identification of
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the peak in the specific heat for different temperatures can be used as an indicator to characterize
Xcmc. Naturally this energy scale will be different for different amphiphilic systems. These
predictions can be verified experimentally from differential calorimetric measurements and
scattering experiments on the same system. For example, the temperature dependence of the
specific heat has been investigated experimentally for PEO–PPO–PEO block co-polymers by
Alexandris et al [43]. However, the systems are different in size and shape to those used in
our simulation, but the specific heat exhibits a peak as a function of temperature.

We have also checked that for low concentrations higher-order moments can be obtained
from the second moment of the distribution function as predicted by analytic theories. Since the
lattice model studied here involves only nearest-neighbour interactions, for low concentrations
the interaction term has hardly any effect. Naturally, equation (11) is well satisfied and is a
consequence of equation (9) without the interaction term. It will be worthwhile to extend these
investigations either to larger concentrations for the neutral amphiphiles, or to ionic micelles,
to check how interaction among micelles affects this result. Finally, as we found that in our
simulations the observed micelles were mostly elongated, we took a look at the simple theory of
one-dimensional micelles and compared the fluctuation of the cluster size with the predictions
of this exactly solvable theory. We have found that the quantity σ increases at low temperature
and the scaling of σ/

√
X is only approximate. However, the scaled data exhibit a crossover

around the same temperature corresponding to the Schottky energy scale of two amphiphiles.
We conclude by mentioning some of the issues that we would like to explore in the future.

The argument in favour of an observed peak in the specific heat rests on a discrete energy level
structure arising out of the lattice model. In particular, the energy difference Egap = 4 comes
out of the association of amphiphile chains three units long arranged in linear geometry. It
will be interesting to extend the present simulation studies to larger chains which should form
spherical micelles. The second issue is that of to what extent these results will be tenable for
continuum models. The lattice models can be looked at as a limit of continuum models with
short-range interactions. The observed peak in the specific heat is a feature of models with
short-range interactions. Therefore we believe that this peak is a generic feature of all models
of micellization with a short-range interaction. For the continuum models this peak is likely
to be broader. Since previous lattice calculations produce cluster distributions similar to those
obtained with a short-range model in the continuum, the observed cluster size fluctuation will
still remain valid in the continuum limit. Some of these issues are currently under investigation
and will be reported on separately [44].
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Appendix

Let us define y = X1eα . Therefore from equation (17)

ni = Xi

i
= yie−α (A.1)

∞∑
i=1

ni =
∞∑
i=1

Xi

i
=

∞∑
i=1

yie−α. (A.2)

Let us define

S0 =
∞∑
i=1

yi =
(

1

1 − y
− 1

)
= y

1 − y
. (A.3)
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It is straightforward to check that the following identity holds for S0:
∞∑
i=1

ipyi =
[
y

d

dy

]p
S0. (A.4)

Therefore,
∞∑
i=1

ni = y

1 − y
e−α (A.5)

∞∑
i=1

ini =
∞∑
i=1

Xi =
∞∑
i=1

iyie−α = y
dS0

dy
e−α = y

(1 − y)2
e−α (A.6)

∞∑
i=1

i2ni =
∞∑
i=1

iXi =
∞∑
i=1

[i2yi]e−α = y
d

dy

[
y

dS0

dy

]
e−α = y(1 + y)

(1 − y)3
e−α. (A.7)

From equations (A.1) and (A.2) it follows that pi = (X1eα)i−1[1 −X1eα] (equation (19)).
From equation (A.6) we get

X = y

(1 − y)2
e−α = X1

(1 −X1eα)2
. (A.8)

Solving the above equation for X1, one gets equation (20). From equations (13), (A.5), (A.6),
and (A.7), it follows that

n̄ = 1

1 − y
(A.9)

( ∞∑
i=1

i2ni

)/( ∞∑
i=1

ni

)
= (1 + y)

(1 − y)2
. (A.10)

Substituting equations (A.9) and (A.10) in equation (12) we get

σ =
√
(1 + y)

(1 − y)2
− 1

(1 − y)2
=

√
y

(1 − y)2
. (A.11)

From equation (A.8) it then follows that

σ =
√
Xeα Q.E.D. (A.12)
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